STPA-Sec

stealing from safety engineering to improve threat modeling

Journey: Aviation Safety

It's never been safer to fly; deaths at record low

JOSHUA FREED, AP Airlines Writers, SCOTT MAYEROWITZ, AP Airlines Writers Updated 11:12 a.m., Saturday, December 31, 2011

FLE - In this Dec. 23, 2011 file photo, travelers check their luggage at a United Arlines express check-in area at OHare International Arport In Cheage. Bearding an ariptane has never been aster. In the last 10 years, there were 153 fatalities in U.S. arilen crashes. That's 2 deaths for every 100 million passengers and the safest decade in the countryls aviation history, according to an Associated Press analysis of government accident data. Photo: Nam Y, Huh / AP

us on Facebook and Twitter.

apps for iPhone and Android. Follow

NEW YORK (AP) — Boarding an airplane has never been safer.

 weet
 in the base to years have been the best in the country's

 ariger | Smaler
 Email This

 intable Version
 Font

 according to an Associated Press analysis of

 Download the seattleoi.com mobile

The improvement is remarkable. Just a decade earlier, at the time the safest, passengers were 10 times as likely to die when flying on an American plane. The risk of

death was even greater during the start of the jet age, with 1,696 people dying - 133 out of every 100 million passengers - from 1962 to 1971. The figures exclude acts of terrorism.

The New School of Information Security

The Blog Inspired By The Book

Aviation Safety

The past 10 years have been the best in the country's aviation history with 153 fatalities. That's two deaths for every 100 million passengers on commercial flights, according to an Associated Press analysis of government accident data.

The improvement is remarkable. Just a decade earlier, at the time the safest, passengers were 10 times as likely to die when flying on an American plane. The risk of death was even greater during the start of the jet age, with 1,696 people dying — 133 out of every 100 million passengers — from 1962 to 1971. The figures exclude acts of terrorism.

There are a number of reasons for the improvements.

- The industry has learned from the past. New planes and engines are designed with prior mistakes in mind. Investigations of accidents have led to changes in procedures to ensure the same missteps don't occur again.
- Better sharing of information. New databases allow pilots, airlines, plane manufactures and regulators to track incidents and near misses. Computers pick up subtle trends. For instance, a particular runway might have a higher rate of aborted landings when there is fog. Regulators noticing this could improve lighting and add more time between landings.

("It's never been safer to fly; deaths at record low", AP, link to Seattle PI version.)

Well, it seems there's nothing for information security to learn here. Move along.

Filed under: Doing it Differently, measurement, Science of Risk Management by adam on Wednesday, January 25, 2012

Journey: Systems Safety

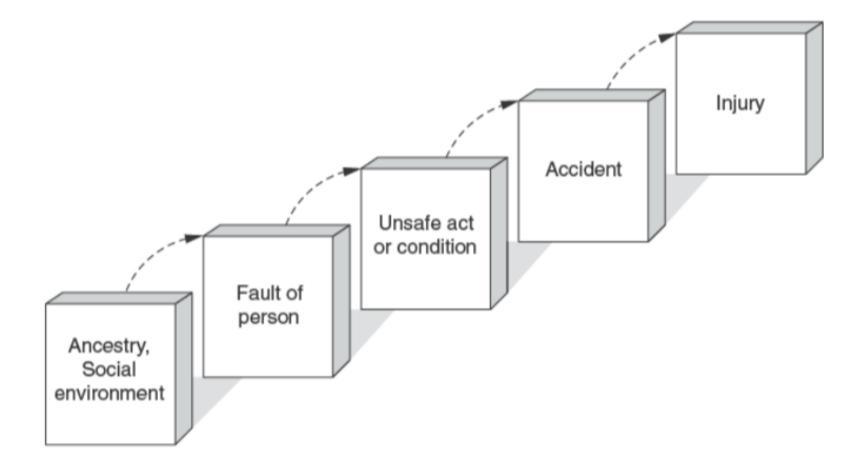
"How Complex Systems Fail," Richard I Cook, MD

http://web.mit.edu/2.75/resources/random/How%20Complex%20Systems%20Fail.pdf

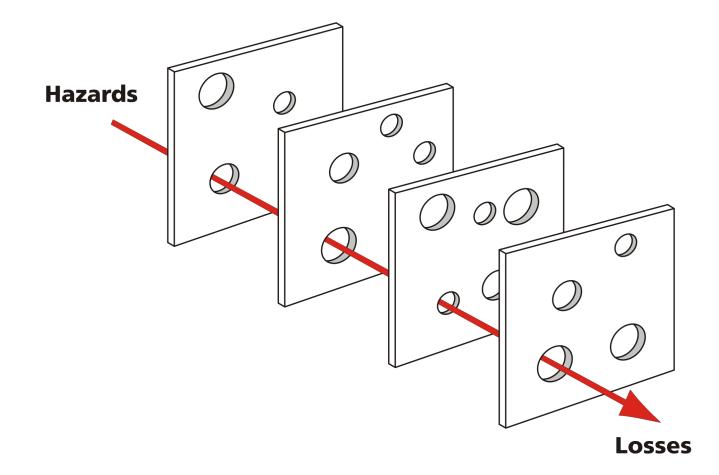
Engineering a Safer World, Nancy G Leveson

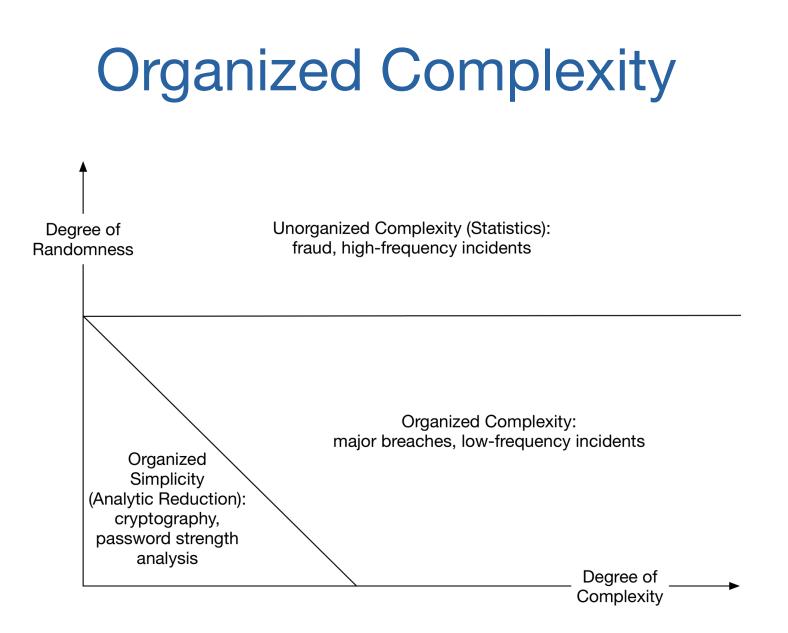
https://mitpress.mit.edu/sites/default/files/titles/free_download/ 9780262016629_Engineering_a_Safer_World.pdf

2016 STAMP Workshop

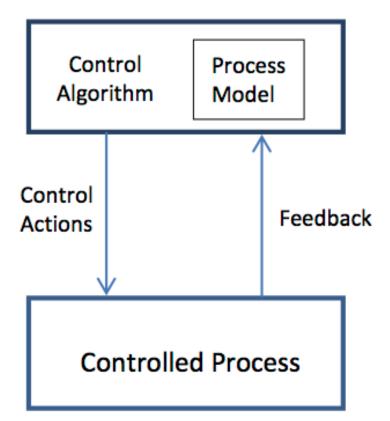

http://psas.scripts.mit.edu/home/2016-stamp-workshop/

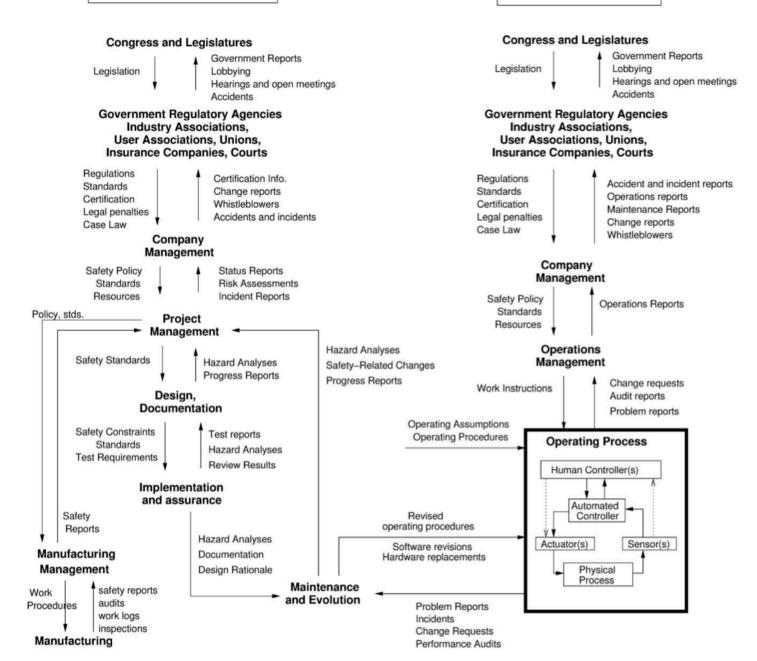
Why STAMP?


STAMP Tools


- STAMP: Causality Model
- CAST: Accident Analysis
- STPA: Hazard Analysis
- STECA: Early Concept Analysis
- STPA-Sec: Security Analysis
- Leading Indicators

Heinrich's Domino model


Swiss Cheese model


STAMP model

Controller (automated or human)

SYSTEM DEVELOPMENT

SYSTEM OPERATIONS

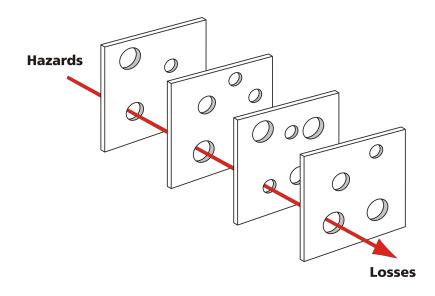
STAMP Assumptions

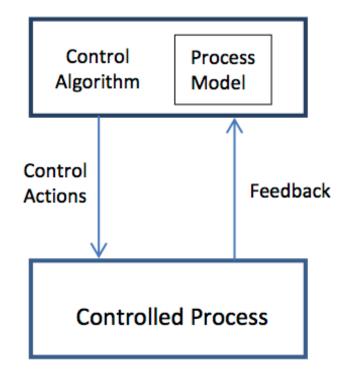
Old Assumption	New Assumption
Safety is increased by increasing system or component reliability; if components do not fail, then accidents will not occur.	High reliability is neither necessary nor sufficient for safety.
Accidents are caused by chains of	Accidents are complex processes
directly related events. We can	involving the entire sociotechnical
understand accidents and assess risk	system. Traditional event-chain
by looking at the chains of events	models cannot describe this
leading to the loss.	process adequately.
Probabilistic risk analysis based on	Risk and safety may be best
event chains is the best way to assess	understood and communicated in
and communicate safety and risk	ways other than probabilistic risk
information.	analysis.

STAMP Assumptions

Old Assumption	New Assumption
Most accidents are caused by operator error. Rewarding safe behavior and punishing unsafe behavior will eliminate or reduce accidents significantly.	Operator error is a product of the environment in which it occurs. To reduce operator "error" we must change the environment in which the operator works.
Highly reliable software is safe.	Highly reliable software is not necessarily safe. Increasing software reliability will have only minimal impact on safety.

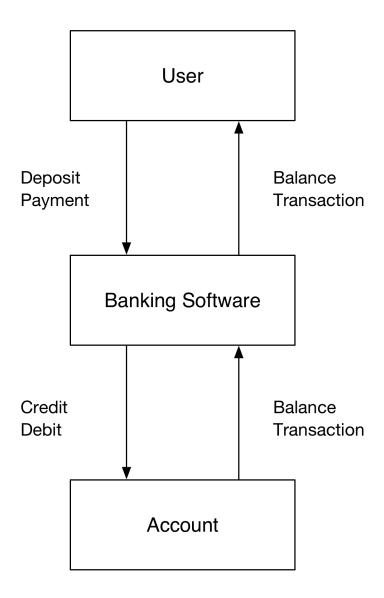
STAMP Assumptions


Old Assumption	New Assumption
Assigning blame is necessary to learn from and prevent accidents or incidents.	Blame is the enemy of safety. Focus should be on understanding how the system behavior as a whole contributed to the loss and not on who or what to blame for it.
Major accidents occur from the chance simultaneous occurrence of random events.	Systems will tend to migrate toward states of higher risk. Such migration is predictable and can be prevented by appropriate system design or detected during operations using leading indicators of increasing risk.

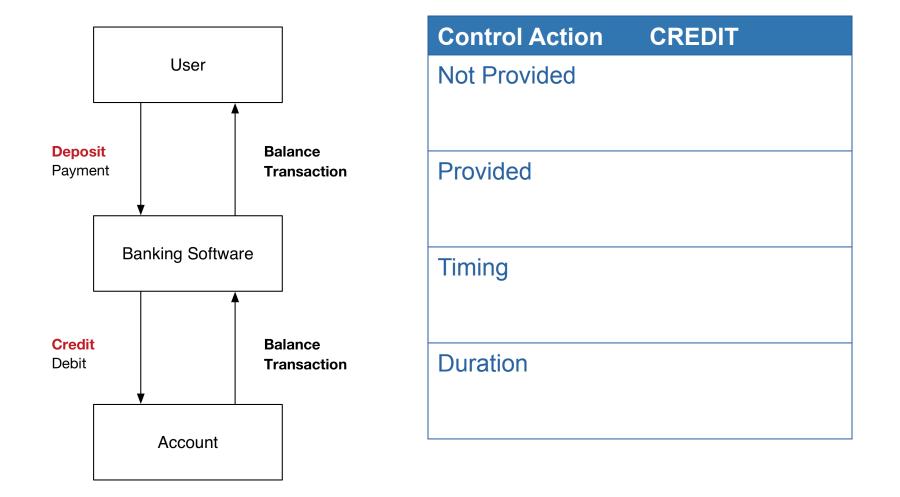

Security vs Safety

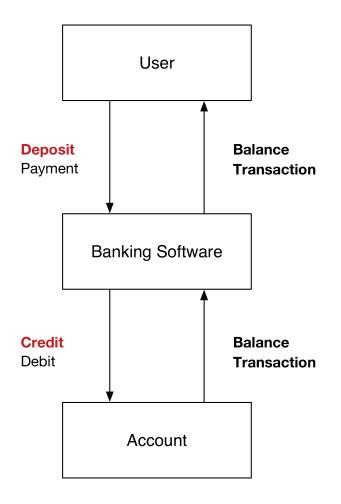
Security: Layered defenses against possible attacks

Safety: Keep system out of hazardous state


Controller (automated or human)

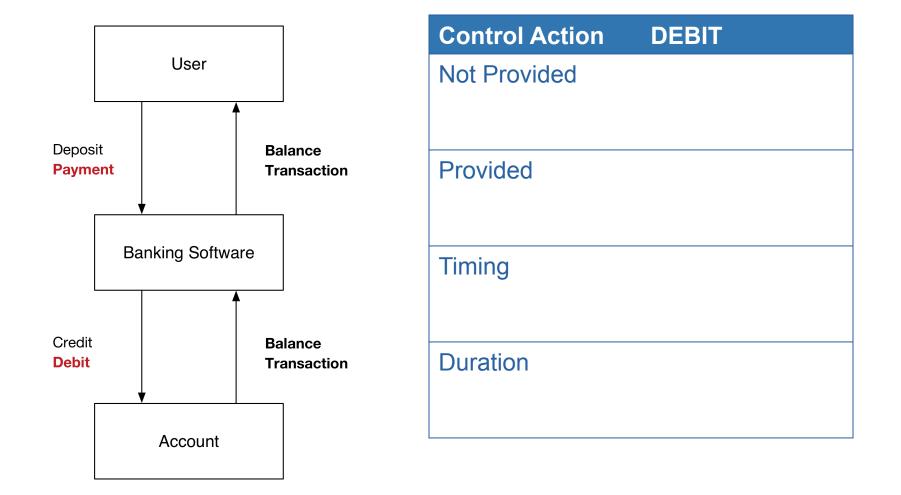
A walkthrough of STPA-Sec using a simple banking application


STPA-SEC EXAMPLE

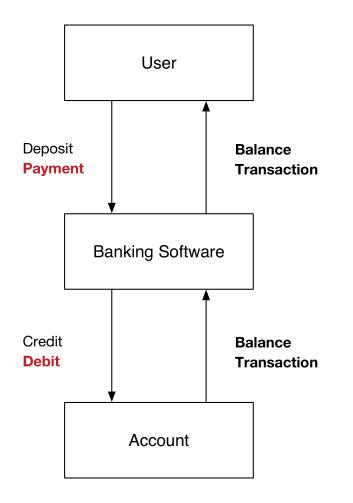

Accidents, Hazards, Constraints

- A1: Loss of money from bank account
- A2: Loss of privacy, banking data exposed
- H1: Unintended payment of funds
- H2: Failure to receive deposits
- H3: Data exposed to unauthorized party
- C1: System must prevent unintended debits
- C2: System must fully credit accounts
- C2: System must not expose transaction details

Deposit – Unsafe Control Actions



Deposit – Unsafe Control Actions



Control Action	CREDIT
Not Provided	UCA1: Software does not credit account when user provides valid deposit (H2)
Provided	No Hazard
Timing	No Hazard
Duration	UCA2: Software does not credit full amount when user provides valid deposit (H2)

Payment – Unsafe Control Actions

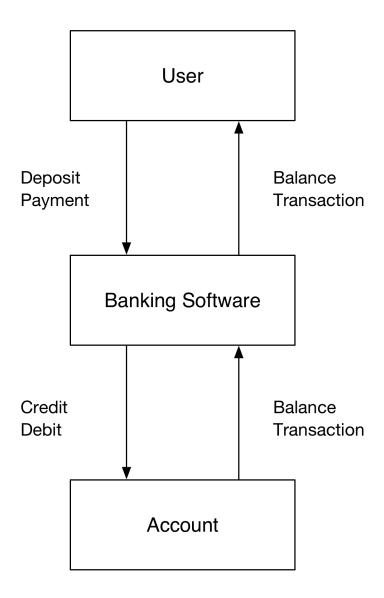
Payment – Unsafe Control Actions

Control Action	DEBIT
Not Provided	No Hazard
Provided	UCA3: Software debits account when user has not requested a payment (H1)
Timing	No Hazard
Duration	UCA4: Software debits more than full amount when user has requested a payment (H1)

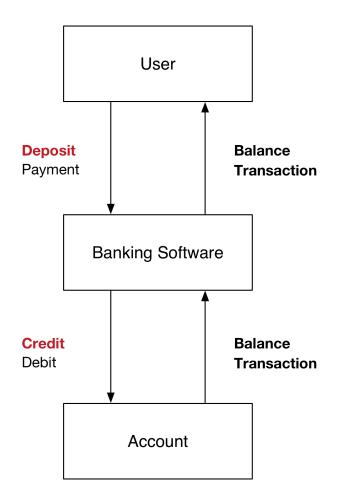
Unsafe Control Actions

Control Action	Not Provided	Provided	Timing	Duration
Credit (Deposit)	UCA1: Software does not credit account when user provides valid deposit (H2)	No Hazard	No Hazard	UCA2: Software does not credit full amount when user provides valid deposit (H2)
Debit (Payment)	No Hazard	UCA3: Software debits account when user has not requested a payment (H1)	No Hazard	UCA4: Software debits more than full amount when user has requested a payment (H1)

Generating Scenarios with STRIDE

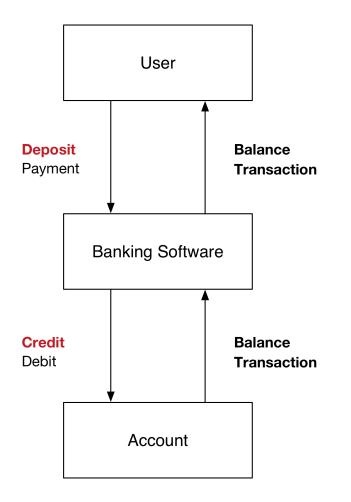

	Spoofing	Tampering	Denial of Service
UCA1	S1: Attacker spoofs bank software and user (MITM) and changes deposit/payment	S2: Attacker alters deposit/payment command	S3: Attacker blocks deposit command
UCA2	S1: Attacker spoofs bank software and user (MITM) and changes deposit/payment	S2: Attacker alters deposit/payment command	N/A
UCA3	S4: Attacker spoofs user and provides payment command	N/A	N/A
UCA4	S1: Attacker spoofs bank software and user (MITM) and changes deposit/payment	S2: Attacker alters deposit/payment command	N/A

Scenarios

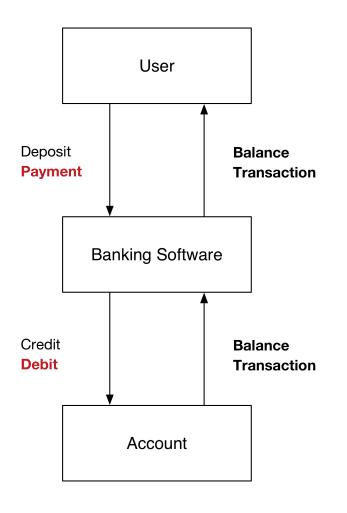

- S1: Attacker spoofs bank software and user (MITM) and changes deposit/ payment
- S2: Attacker alters deposit/payment command
- S3: Attacker blocks deposit command
- S4: Attacker spoofs user and provides payment command

Wait!

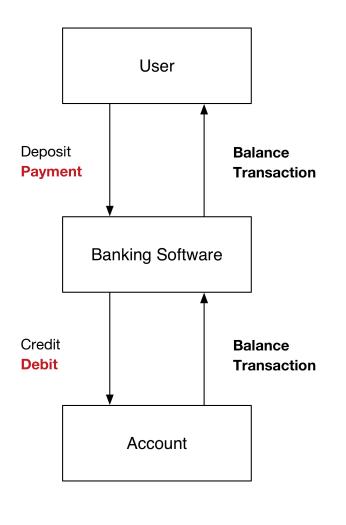
- Repudiation: skipped, doesn't impact hazards we identified
- Elevation of Privilege: skipped, doesn't make sense in the context of the system
- Information Disclosure: hmm...



Deposit – UCA v2


Control Action	CREDIT
Not Provided	UCA1: Software does not credit account when user provides valid deposit (H2)
Provided	No Hazard
Timing	No Hazard
Duration	UCA2: Software does not credit full amount when user provides valid deposit (H2)
Intercepted	

Deposit – UCA v2


Control Action	CREDIT
Not Provided	UCA1: Software does not credit account when user provides valid deposit (H2)
Provided	No Hazard
Timing	No Hazard
Duration	UCA2: Software does not credit full amount when user provides valid deposit (H2)
Intercepted	UCA5: Software discloses account balance and/or transaction details (H3)

Payment – UCA v2

Control Action	DEBIT
Not Provided	No Hazard
Provided	UCA3: Software debits account when user has not requested a payment (H1)
Timing	No Hazard
Duration	UCA4: Software debits more than full amount when user has requested a payment (H1)
Intercepted	

Payment – UCA v2

Control Action	DEBIT
Not Provided	No Hazard
Provided	UCA3: Software debits account when user has not requested a payment (H1)
Timing	No Hazard
Duration	UCA4: Software debits more than full amount when user has requested a payment (H1)
Intercepted	UCA5: Software discloses account balance and/or transaction details (H3)

Generating Scenarios v2

	Spoofing	Tampering	Information Disclosure	Denial of Service
UCA1	S1: Attacker spoofs bank software and user (MITM) and changes deposit/ payment	S2: Attacker alters deposit/payment command	N/A	S3: Attacker blocks deposit command
UCA2	S1: Attacker spoofs bank software and user (MITM) and changes deposit/ payment	S2: Attacker alters deposit/payment command	N/A	N/A
UCA3	S4: Attacker spoofs user and provides payment command	N/A	N/A	N/A

Generating Scenarios v2

	Spoofing	Tampering	Information Disclosure	Denial of Service
UCA4	S1: Attacker spoofs bank software and user (MITM) and changes deposit/ payment	S2: Attacker alters deposit/payment command	N/A	N/A
UCA5	S5: Attacker spoofs user and reads balance/ transaction	N/A	S6: Attacker reads deposit/ payment command	N/A
			S7: Attacker reads balance/ transaction reply	

Scenarios

- S1: Attacker spoofs bank software and user (MITM) and changes deposit/payment
- S2: Attacker alters deposit/payment command
- S3: Attacker blocks deposit command
- S4: Attacker spoofs user and provides payment command
- S5: Attacker spoofs user and reads balance/ transaction
- S6: Attacker reads deposit/payment command
- S7: Attacker reads balance/transaction reply

Observations

STPA-Sec

Pro	Con
More efficient, effective at systematically modeling system and identifying unsafe system states	Does not account for information disclosure (generally not a safety concern) in current model
Useful for both engineering and failure analysis	Does not provide methods for prioritization
Accounts for human behavior – the sociotechnical system	Not widely adopted; primarily an academic model today
Avoids blame	

Thank You!

Contact Information:

John Benninghoff john@transvasive.com http://transvasive.com https://information-safety.org Twitter: @transvasive