\/\akmg R work
for you (with

automation!) é
John Benninghoff

Ny

e f—

RENT MED]

S

Created January 17, 2020. An interactive version of this diagram with descriptions

of the capabilities is at https:/bit ly/dora-bfd. Our guide to DevOps, along with six DORA Research Program Q D 0 RA 3 Goog|e ClOUd

years of State of DevOps Reports, is at https:/cloud.google.com/devops
NFURPS RESFARTH & ASSFSSMENT

—> Predictive Relationship: l \L |
Colors are for readability

and do not have meaning Trust N Voice Autonomy Retrospectives

Constructs grouped by
theme: For readability, this
has no statistical meaning

Second - order construct

Lean Product Development Culture and Work Environment

Work in Climate for
Small Batches Learning
Make Flow of
Work Visible Westrum

Organizational Culture

Gather & Implement
Customer Feedback Culture of
Psychological Safety
Team
Experimentation
Job
Satisfaction

Transformational Leadership Change Approvals »
entity
Vision Clear
Process
Inspirational Heavyweight Process Organizational Performance
Communication decreases
Commercial
Intellectual Performance
Stimulation
FE e Non-commercial
Supponi\{e Performance
f' Leadership Limit Work in
Process (WIP)
Personal
Recognition Visual
Functional Outsourcin
Management decreases o
Feedback from
Production
SDO Performance
Software Delivery
Technical Practices Performance
Test Continuous
Automation Testing
Availability
Deployment Version
Automation Control
Disaster Recovery
Trunk-Based Test Data Testing
Development Management
Shift Left Monitoring & Cloud
on Security Observability Infrastructure
Loosel_y Coupled Pr_oacu_ve less
Architecture Notifications Burnout
Empowered Database Change
Teams Management N Continuous less
Delivery Deployment Pain
Continuous Code
Integration Maintainability less

Rework

T eeLuvUuuiv mrTvin

Production
Technical Practices
| Test Continuous
i Automation Testing
! Deployment Version
i Automation Control
Trunk-Based Test Data
Development Management
Shift Left Monitoring &
on Security Observability

Loosely Coupled Proactive
Architecture Notifications
Empowered Database Change

Teams Management
Continuous Code
Integration Maintainability

SDO Performance

Software Delivery
Performance

Availability

!

Disaster Recovery
Testing

Cloud
Infrastructure

less
Burnout

Continuous less
Delivery Deployment Pain

g

less
Rework

%—_

R Development Timeline

notebooks - WOfk{hOp? sirac<|2022

development

2024-01 2021-07 2022-01

INntroduction

Event
SiRAcon 2020 style.tidyverse.org
rstudio-training rtraining package
"Working with R" publish to GitHub pages
first bug discovered rtraining 0.0.1
Jl Aug Sep Oct Nov Dec Jan Feb Mar Apr May

2020 2021

Jun

Jul

Aug

notes to automation

Sep

Oct

Nov

rdev 1.0.0!

write_eval()

release automation

package automation

theme_quo() continous improvement
Dec Jan Feb Mar Apr
2022

Version Control

Event rstudio-training rtraining package
Version Control setup-r script
project in git
depenencies in git .Rprofile in git
g Sep Oct Nov Dec Jan Feb Mar Apr

2020 2021

Put everything (except artifacts)
into version control for
reproducibility and history.

Packages

* renv: dependency
management

rdev 1.0.0!

May Jun Jul Aug Sep Oct Nov Dec Jan Feb
2022

Trunk-Based
Development

Event

Trunk-based Development

rstudio-training

commit to master

2020

Sep

Oct

Nov

rtraining package

merge to main

Dec

Jan

2021

Feb

Mar

Apr

Linear development avoids
code conflicts.

May

Jun

Jul

Aug

Sep

rdev 1.0.0!

release automation

shorter branches

Oct Nov Dec Jan Feb
2022

Shifti ng | eft on Maintenance first ensures you
: get it done.
Security

Packages:
* renv

Event rstudio-training rtraining package rdev 1.0.0!
Shift Left on Security | gtart with renv::update() check_renv() complete test coverage
Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
2022

2020 2021

Continuous
Integration

Event rstudio-training rtraining package
Continuous Integration multi-platform checks

R CMD INSTALL

GitHub Actions
ci()
] Sep Oct Nov Dec Jan Feb Mar Apr

2020 2021

Build and test on each commit
to catch mistakes early.

Packages:
 devtools

e usethis

* r-lib/actions

rdev 1.0.0!

complete test coverage

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
2022

ci {rdev} R Documentation

Local Cl

Description

Run continuous integration tests locally.

Usage

ci(renv = TRUE, styler = NULL, lintr = TRUE, document TRUE, rcmdcheck = TRUE)

Arguments

renv check renv: :status ().
styler style all files using style_all(), see details

lintr lint all files using 1int_all ().

document rundevtools::document ().

rcmdcheck run R CMD check using: remdcheck: : remdcheck(args = "—no-manual", error on = "warning").

Details

If renv: :status (). is not synchronized, ci () will stop.

If styler is set to NULL (the default), style_all (). will be run only if there are no uncommitted changes to git. Setting the value to TRUE or FALSE overrides this check.

If lint_all () finds any lints, ci () will stop and open the RStudio markers pane.

Examples

Run examples

Not run:

ci()

ci(styler = TRUE)

ci(styler = FALSE, rcmdcheck = FALSE)

End(Not run)

[Package rdev version 1.4.3 Index]

Deployment
Automation

Event rstudio-training rtraining package

Deployment Automation

build-site script

build_analysis_site()

Sep Oct Nov Dec Jan Feb Mar
2020 2021

Apr

Automate your development
workflow to spend more time
writing.

Packages:

» pkgdown, rmarkdown:
build_analysis_site()

» gert, gh: git, GitHub automation

notes to automation rdev 1.0.0 !
new_branch()
merge_release()
stage_release()
dynamic notebook list

docs: release process build_rdev_site()

May Jun Jul Aug Sep Oct Nov Dec Jan Feb
2022

Workflow

* new_branch(): Create a new branch and bump 'deV' version to
9000

« write the code, test(), commit, ci(), repeat

 stage_release(): Open a GitHub pull request for a new release
from NEWS.md. Calls build_analysis_site() or build_rdev_site() to
build GitHub pages (README, notebooks, package docs)

» wait for GitHub Actions to complete successfully

* merge_release(): Merge and create a new release on GitHub.

Dynamic notebook lists

« rmd_metadata(): Extract the YAML front matter and 'description’ line from an analysis
notebook, and construct a URL to the notebook's location on GitHub pages.

library(rdev)
library(fs)
library(dplyr)
library(purrr)

notebooks <- dir_1ls("analysis", glob = "*.Rmd") |>
map_dfr(rmd_metadata) |>
mutate(bullet = pasteo("- [", title, "](", url, ") (", date, "): ", description)) |[>
pull(bullet)

writelLines(notebooks)

https://jabenninghoff.github.io/rdev/articles/analysis-package-layout.html

Code Maintainability

Event

Code Maintainability

rstudio-training

2020

upstream issues

Sep

Oct

Nov

rtraining package

style_all

rdev package

Analysis Package Layout

styler

Dec

migrate to rdev

Jan

2021

Feb

Mar

Apr

Consistent and clean code is
easier to understand.

Packages:
o styler

* roxygenz2
* purrr

e desc

notes to automation rdev 1.0.0!
write_eval()
notebook template
use_rdev_package()
create_github_repo()
docs: create package

docs: Package Layout use_analysis_package()

May Jun Jul Aug Sep Oct Nov Dec Jan Feb
2022

A really bad idea for maintainability

Write and evaluate an expression

‘write_eval(string)® is a simple wrapper that prints “string ™ to the console using

['writeLines()]J[base::writelLines], then executes the expression using [parse()][base::parse]
and [“eval()][base::eval].

@param string An expression to be printed to the console and evaluated

@return The return value from the evaluated expression

@examples
write eval("pi")

HHEHAFHFHFHFHAFHFHHFH

write eval("exp(1)")

#' @export

write_eval <- function(string) {

if (!is.character(string)) stop("not a character vector")
if (string == "") stop("nothing to evaluate")
writeLines(string)

eval(parse(text = string))

}

Continuous Testing

Event rstudio-training

Continuous Testing

| Sep Oct
2020

rtraining package

R CMD check
lintr lint_all()
Nov Dec Jan Feb Mar Apr
2021

The biggest challenge: formally

specifying what you are building and
how it is supposed to work defends
against the dangers of hidden

assumptions.

Packages
 lintr

» rcmdcheck
 testthat

* COvr

May Jun Jul

Aug

mockery
withr
rlang
spelling

notes to automation

Sep

Oct Nov

rdev 1.0.0!

complete test coverage

local_temppkg()

manual test script

adding test coverage

Dec Jan Feb Mar
2022

Results

R Development Timeline

notebooks - WOfk{hOp? sirac<|2022

development

2024-01 2021-07 2022-01

200

100

Monthly commits by repository

2021-01

2021-07

2022-01

repository
rstudio-training
software-resilience
rtraining

rdev

workshop7

jbplot

20 I 2 O I O

siracon2022

400

300

200

100

Monthly git commits

2021-01

2021-07

2022-01

Monthly GitHub releases

30

20

10

2021-01 2021-07 202201

0.12

0.09

0.06

0.03

0.00

Monthly GitHub releases per commit

2021-01

2021-07

2022-01

Ny

e f—

RENT MED]

S

Feedback frrom

Production
Technical Practices
Test Continuous
Automation Testing
Deployment Version
Automation Control
Trunk-Based Test Data
Development Management
Shift Left Monitoring &
on Security Observability
Loosely Coupled Proactive
Architecture Notifications
Empowered Database Change
Teams Management
4 Continuous Code
i Integration Maintainability

Continuous
Delivery

SDO Performance l

Software Delivery
Performance

Availability

[

Disaster Recovery
Testing

Cloud
Infrastructure

less
Burnout

less

Deployment Pain

less
Rework

Questions?

https://www.information-safety.org
https://www.linkedin.com/in/jbenninghoff/
@jbenninghoff

jbenninghoff@mac.com

Event

Version Control

Trunk-based Development

Shift Left on Security

Continuous Integration

Deployment Automation

Code Maintainability

Continuous Testing

rdev Packages

» desc * pkgdown

» devtools * purrr

o fs * rcmdcheck
e gert * remotes

* gh * renv

o lintr * rlang

* markdown rmarkdown
* miniUl o styler

e tibble

* usethis
e withr

* Xxml2

* yaml

* COVr
DT

* knitr

* mockery
* spelling
* stringi

* testthat

Future Testing

Mutation Testing: Wikipedia

* R packages:

* mutant

* autotest

* Papers:
» Does mutation testing improve testing practices?

» Practical Mutation Testing at Scale

Formal Methods:
* Planning with flare
» Hillel Wayne
 Learn TLA+
» Alloy Documentation

https://en.wikipedia.org/wiki/Mutation_testing
https://github.com/sckott/mutant
https://github.com/ropensci-review-tools/autotest/
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf
https://homes.cs.washington.edu/~rjust/publ/practical_mutation_testing_tr_2021.pdf
https://increment.com/planning/formal-specifications-and-planning/
https://hillelwayne.com/
https://learntla.com/introduction/
https://alloy.readthedocs.io/en/latest/

References

 DORA Research

* “Working with R”

* First bug: https://github.com/rstudio/renv/issues/547

* Notebooks used to develop this presentation: siracon2022

* All my work: https://github.com/jabenninghoff

https://www.devops-research.com/research.html
https://www.information-safety.org/2020/09/11/working-with-r/
https://github.com/rstudio/renv/issues/547
https://jabenninghoff.github.io/siracon2022/
https://github.com/jabenninghoff

