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Introduction



Version Control
Put everything (except artifacts) 
into version control for 
reproducibility and history.
Packages
• renv: dependency 

management



Trunk-Based 
Development

Linear development avoids 
code conflicts.



Shifting Left on 
Security

Maintenance first ensures you 
get it done.
Packages:
• renv



Continuous 
Integration

Build and test on each commit 
to catch mistakes early.
Packages:
• devtools
• usethis
• r-lib/actions





Deployment 
Automation

Automate your development 
workflow to spend more time 
writing.
Packages:
• pkgdown, rmarkdown:

build_analysis_site()
• gert, gh: git, GitHub automation



Workflow

• new_branch(): Create a new branch and bump 'dev' version to 
9000
• write the code, test(), commit, ci(), repeat
• stage_release(): Open a GitHub pull request for a new release 

from NEWS.md. Calls build_analysis_site() or build_rdev_site() to 
build GitHub pages (README, notebooks, package docs)
• wait for GitHub Actions to complete successfully
• merge_release(): Merge and create a new release on GitHub.



Dynamic notebook lists
• rmd_metadata(): Extract the YAML front matter and 'description' line from an analysis 

notebook, and construct a URL to the notebook's location on GitHub pages.

library(rdev)
library(fs)
library(dplyr)
library(purrr)

notebooks <- dir_ls("analysis", glob = "*.Rmd") |>
map_dfr(rmd_metadata) |>
mutate(bullet = paste0("- [", title, "](", url, ") (", date, "): ", description)) |>
pull(bullet)

writeLines(notebooks)

https://jabenninghoff.github.io/rdev/articles/analysis-package-layout.html


Code Maintainability
Consistent and clean code is 
easier to understand.
Packages:
• styler
• roxygen2
• purrr
• desc



A really bad idea for maintainability
#' Write and evaluate an expression
#'
#' `write_eval(string)` is a simple wrapper that prints `string` to the console using
#' [`writeLines()`][base::writeLines], then executes the expression using [`parse()`][base::parse]
#' and [`eval()`][base::eval].
#'
#' @param string An expression to be printed to the console and evaluated
#'
#' @return The return value from the evaluated expression
#'
#' @examples
#' write_eval("pi")
#'
#' write_eval("exp(1)")
#' @export
write_eval <- function(string) {

if (!is.character(string)) stop("not a character vector")
if (string == "") stop("nothing to evaluate")
writeLines(string)
eval(parse(text = string))

}



Continuous Testing
The biggest challenge: formally 
specifying what you are building and 
how it is supposed to work defends 
against the dangers of hidden 
assumptions.
Packages
• lintr
• rcmdcheck
• testthat
• covr

• mockery
• withr
• rlang
• spelling



Results

















Questions?

https://www.information-safety.org
https://www.linkedin.com/in/jbenninghoff/
@jbenninghoff
jbenninghoff@mac.com





rdev Packages

• desc
• devtools
• fs
• gert
• gh
• lintr
• markdown
• miniUI

• pkgdown
• purrr
• rcmdcheck
• remotes
• renv
• rlang
• rmarkdown
• styler

• tibble
• usethis
• withr
• xml2
• yaml

• covr
• DT
• knitr
• mockery
• spelling
• stringi
• testthat



Future Testing
Mutation Testing: Wikipedia

• R packages:
• mutant
• autotest

• Papers:
• Does mutation testing improve testing practices?
• Practical Mutation Testing at Scale

Formal Methods:
• Planning with flare
• Hillel Wayne
• Learn TLA+
• Alloy Documentation

https://en.wikipedia.org/wiki/Mutation_testing
https://github.com/sckott/mutant
https://github.com/ropensci-review-tools/autotest/
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf
https://homes.cs.washington.edu/~rjust/publ/practical_mutation_testing_tr_2021.pdf
https://increment.com/planning/formal-specifications-and-planning/
https://hillelwayne.com/
https://learntla.com/introduction/
https://alloy.readthedocs.io/en/latest/
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