
Making R work 
for you (with 
automation!)
John Benninghoff









DevOps 
Research

Change Approvals

Trust

less 
Burnout

less 
Deployment Pain

less 
Rework

Autonomy Retrospectives

Culture and Work Environment

Westrum 
Organizational Culture

Culture of 
Psychological Safety

Climate for 
Learning

Job 
Satisfaction

Identity

SDO Performance

Availability

Lean Product Development

Technical Practices

Database Change 
Management

Test 
Automation

Deployment 
Automation

Trunk-Based 
Development

Shift Left 
on Security

Loosely Coupled 
Architecture

Empowered 
Teams

Continuous 
Integration

Continuous 
Testing

Version 
Control

Test Data 
Management

Monitoring & 
Observability

Proactive 
Notifications

Code 
Maintainability

Work in 
Small Batches

Make Flow of 
Work Visible

Gather & Implement 
 Customer Feedback

Team 
Experimentation

Transformational Leadership

Vision

Inspirational 
Communication

Intellectual 
Stimulation

Supportive 
Leadership

Personal 
Recognition

Lean Management

Limit Work in 
Process (WIP)

Visual 
Management

Feedback from 
Production

Heavyweight Process
  decreases

Clear 
Process

Voice

Organizational Performance

Commercial 
Performance

Non-commercial 
Performance

Software Delivery 
Performance

Continuous 
Delivery

Cloud 
Infrastructure

Predictive Relationship: 
Colors are for readability 
and do not have meaning

Second - order construct 

Constructs grouped by 
theme: For readability, this 
has no statistical meaning

Functional Outsourcing
decreases

Disaster Recovery 
Testing

DORA Research ProgramCreated January 17, 2020. An interactive version of this diagram with descriptions
of the capabilities is at https://bit.ly/dora-bfd. Our guide to DevOps, along with six
years of State of DevOps Reports, is at https://cloud.google.com/devops







Introduction



Version Control
Put everything (except artifacts) 
into version control for 
reproducibility and history.
Packages
• renv: dependency 

management



Trunk-Based 
Development

Linear development avoids 
code conflicts.



Shifting Left on 
Security

Maintenance first ensures you 
get it done.
Packages:
• renv



Continuous 
Integration

Build and test on each commit 
to catch mistakes early.
Packages:
• devtools
• usethis
• r-lib/actions





Deployment 
Automation

Automate your development 
workflow to spend more time 
writing.
Packages:
• pkgdown, rmarkdown:

build_analysis_site()
• gert, gh: git, GitHub automation



Workflow

• new_branch(): Create a new branch and bump 'dev' version to 
9000
• write the code, test(), commit, ci(), repeat
• stage_release(): Open a GitHub pull request for a new release 

from NEWS.md. Calls build_analysis_site() or build_rdev_site() to 
build GitHub pages (README, notebooks, package docs)
• wait for GitHub Actions to complete successfully
• merge_release(): Merge and create a new release on GitHub.



Dynamic notebook lists
• rmd_metadata(): Extract the YAML front matter and 'description' line from an analysis 

notebook, and construct a URL to the notebook's location on GitHub pages.

library(rdev)
library(fs)
library(dplyr)
library(purrr)

notebooks <- dir_ls("analysis", glob = "*.Rmd") |>
map_dfr(rmd_metadata) |>
mutate(bullet = paste0("- [", title, "](", url, ") (", date, "): ", description)) |>
pull(bullet)

writeLines(notebooks)

https://jabenninghoff.github.io/rdev/articles/analysis-package-layout.html


Code Maintainability
Consistent and clean code is 
easier to understand.
Packages:
• styler
• roxygen2
• purrr
• desc



A really bad idea for maintainability
#' Write and evaluate an expression
#'
#' `write_eval(string)` is a simple wrapper that prints `string` to the console using
#' [`writeLines()`][base::writeLines], then executes the expression using [`parse()`][base::parse]
#' and [`eval()`][base::eval].
#'
#' @param string An expression to be printed to the console and evaluated
#'
#' @return The return value from the evaluated expression
#'
#' @examples
#' write_eval("pi")
#'
#' write_eval("exp(1)")
#' @export
write_eval <- function(string) {

if (!is.character(string)) stop("not a character vector")
if (string == "") stop("nothing to evaluate")
writeLines(string)
eval(parse(text = string))

}



Continuous Testing
The biggest challenge: formally 
specifying what you are building and 
how it is supposed to work defends 
against the dangers of hidden 
assumptions.
Packages
• lintr
• rcmdcheck
• testthat
• covr

• mockery
• withr
• rlang
• spelling



Results

















Questions?

https://www.information-safety.org
https://www.linkedin.com/in/jbenninghoff/
@jbenninghoff
jbenninghoff@mac.com





rdev Packages

• desc
• devtools
• fs
• gert
• gh
• lintr
• markdown
• miniUI

• pkgdown
• purrr
• rcmdcheck
• remotes
• renv
• rlang
• rmarkdown
• styler

• tibble
• usethis
• withr
• xml2
• yaml

• covr
• DT
• knitr
• mockery
• spelling
• stringi
• testthat



Future Testing
Mutation Testing: Wikipedia

• R packages:
• mutant
• autotest

• Papers:
• Does mutation testing improve testing practices?
• Practical Mutation Testing at Scale

Formal Methods:
• Planning with flare
• Hillel Wayne
• Learn TLA+
• Alloy Documentation

https://en.wikipedia.org/wiki/Mutation_testing
https://github.com/sckott/mutant
https://github.com/ropensci-review-tools/autotest/
https://homes.cs.washington.edu/~rjust/publ/mutation_testing_practices_icse_2021.pdf
https://homes.cs.washington.edu/~rjust/publ/practical_mutation_testing_tr_2021.pdf
https://increment.com/planning/formal-specifications-and-planning/
https://hillelwayne.com/
https://learntla.com/introduction/
https://alloy.readthedocs.io/en/latest/


References

• DORA Research
• “Working with R”
• First bug: https://github.com/rstudio/renv/issues/547
• Notebooks used to develop this presentation: siracon2022
• All my work: https://github.com/jabenninghoff

https://www.devops-research.com/research.html
https://www.information-safety.org/2020/09/11/working-with-r/
https://github.com/rstudio/renv/issues/547
https://jabenninghoff.github.io/siracon2022/
https://github.com/jabenninghoff

